
Using Lua as an Embedded Language

Eric Lewis

April 2, 2018

1 What is Lua?

Lua is a powerful programming language with a focus on being flexible and
lightweight. The name Lua comes from the Portuguese word for Moon. Lua
allows for multiple programming paradigms and can be used as a regular lan-
guage, a scripting language, an embedded language, a language for embedded
systems, or for configuration files. Lua gains its flexlibility from it’s usage of
metatables, a mechanism that gives the programmer a large amount of con-
trol over the language. Lua provides three types to the programmer: numbers,
strings, and tables. Metatables are tables that contain special functions which
allow the programmer to modify behavior of a table such as by preventing the
addition of new values to it.

2 Why use Lua?

Lua can be embedded into existing software to act as a scripting language or
configuration system. Developers are free to decide how far they want to go
in integrating Lua into their software. The developer also has the ability to
restrict what Lua can do by limiting access to certain libraries and functions.
This allows for tight control over scripts to prevent users from creating malicious
code for example.

Lua is licensed under the MIT license. The MIT license allows the program-
mer to use Lua without restriction as long as Lua’s software and documentation

1

is distributed with a copy of its license. As a result, Lua can be used in both
closed source and open source projects.

3 Embedding Lua

When it comes to embedding the usage of Lua usually fits into two categories:
configuration and as an embedded language. Lua can of course be used for
both at the same time. Using Lua for configuration is typically easier as the
programmer usually will not have to expose any interfaces to Lua. Examples
for both styles include C code as it is the simplest way to use it.1 It’s important
to understand certain concepts before attempting to embed Lua. Lua is a stack
and register based language and interaction with Lua is done through both of
these. Data must be put on and popped off the stack in order to move data
between Lua and the host program. In addition the entire Lua environment
is stored in a structure called the Lua state. It is possible to create multiple
states, but only one is used for the examples.

It’s important to note that the examples below are for Lua 5.3. Lua’s ver-
sion by running lua -v in a terminal. If Lua’s version is below 5.3 then it’s
recommended that Lua is updated or the Lua manual is referenced for the Lua
manual on the differences between versions.

3.1 Using Lua for configuration

Using Lua for configuration boils down to a few key steps. Include Lua in a
program, create the Lua state, load a Lua script, and run it. The standard
Lua libraries can be optionally loaded, but for basic configuration this won’t be
necessary.

The below example contains two files, config.lua and main.c. config.lua
contains some simple client variables. main.c gets and uses these variables.2

1It’s assumed that the reader knows how to compile C code and include libraries.
2This code is unsafe and contains no sanity checks or validation. Refer to the Lua manual

on how to safely embed Lua.

2

Listing 1: config.lua

address = ’ 1 . 1 . 1 . 1 ’
port = 8000
timeout = 3000

Listing 2: main.c

1 #include <lua . h>
2 #include < l u a l i b . h>
3 #include < l a u x l i b . h>
4
5 #include <s t d i o . h>
6
7 int main (void) {
8 l u a S t a t e ∗L = luaL newstate () ; //Create a new Lua s t a t e
9

10 l u a L d o f i l e (L , ” c o n f i g . lua ”) ; //Open and run our con f i g f i l e
11
12 //Put the v a r i a b l e s on the Lua s t ac k
13 l u a g e t g l o b a l (L , ” address ”) ;
14 l u a g e t g l o b a l (L , ” port ”) ;
15 l u a g e t g l o b a l (L , ” timeout ”) ;
16
17 //Get the v a r i a b l e s from the Lua s t a c k
18 char ∗ address = l u a t o s t r i n g (L , −3);
19 int port = l u a t o i n t e g e r (L , −2);
20 f loat t imeout = lua tonumber (L , −1);
21
22 p r i n t f (” Connecting to %s :%d with timeout %.1 f ” ,
23 address , port , t imeout) ;
24
25 // . . .
26
27 l u a c l o s e (L) ; //Close the Lua s t a t e
28 return 0 ;
29 }

3

	What is Lua?
	Why use Lua?
	Embedding Lua
	Using Lua for configuration

